440-480 W up to 25% efficiency.

Superior technology made for every roof.

The secure \& sustainable choice.
Committed to a transparent supply chain with preferred nations and a low carbon footprint free of lead and fluorine.
Reduced use of silicon, water and energy thanks to a highly automated and low temperature manufacturing process.

Made in Oklahoma. Designed in Italy. Cells and modules made in Oklahoma, designed in Catania, Italy.

Extensive warranty package.
Built to last: 91.8% performance after 30 years.

Long-term reliability.
Strong mechanical performance, low degradation, PID \& LeTID free.

Trusted performance.
High energy yield year after year even in hot environments and low light conditions.

More energy in less space.
Engineered for rooftops for reduced BOS costs.

WARRANTY

- Dedicated Aftersales \& Labour Warranty
- Product Warranty 25 years*
- Performance Warranty 30 years*
(1\% first year, then 0.25% per year)
*Upon product registration

LINEAR PERFORMANCE WARRANTY

MECHANICAL CHARACTERISTICS

Cell Type	Mono-crystalline. n-type Si HJT, G12 (8.27x8.27 in \| $210 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Number of cells	$1201 / 3$ cells (5×12) 2
Dimensions	$69.06 \times 43.15 \times 1.18$ in \| $1754 \times 1096 \times 30 \mathrm{~mm}$
Weight	46.3 lbs \| 21 kg
Frame	Anodized aluminium (Black on request)
Front Cover	0.13 in \| 3.2 mm textured glass, AR coated, low iron, tempered
Back Cover	White backsheet
Junction Box	IP68. 3 bypass diodes
Output Cable	$0.006 \mathrm{in}^{2} \mid 4 \mathrm{~mm}^{2},(+): 43.3$ in (1100 mm), $(-): 43.3$ in (1100 mm)
Type of Connector	MC4 or MC4 compatible
Front side Maximum static test loading	Up to 5400 Pa

Rear side
Maximum static test loading Up to 2400 Pa

PACKAGING

Packing Configuration	$33 \mathrm{pcs} / \mathrm{box}$
Quantity per Pallet	66 pcs
Modules per Container	$53^{\prime} \mathrm{HQ}: 1122 \mathrm{pcs}$
	$40^{\prime} \mathrm{HQ}: 858 \mathrm{pcs}$

CURRENT-VOLTAGE CURVES - 3SHMBT-WA-460

ELECTRICAL CHARACTERISTICS

		3SHMBT- WA-440		3SHMBT- WA-445		3SHMBT- WA-450		3SHMBT- WA-455		3SHMBT- WA-460		3SHMBT- WA-465		3SHMBT- WA-470		3SHMBT- WA-475		3SHMBT- WA-480	
	UNIT	STC	NMOT																
$\begin{aligned} & \mathbf{P}_{\text {max }} \text { - Power at Maximum } \\ & \text { Power Point } \end{aligned}$	w	440	333	445	336	450	340	455	344	460	348	465	352	470	355	475	359	480	363
\mathbf{V}_{mp} - Voltage at Maximum Power Point	v	35.52	33.79	35.65	33.91	35.78	34.04	35.91	34.16	36.03	34.27	36.15	34.39	36.27	34.51	36.39	34.63	36.51	34.74
$I_{m p}$ - Current at Maximum Power Point	A	12.39	9.84	12.48	9.92	12.58	9.99	12.67	10.07	12.77	10.15	12.86	10.22	12.96	10.30	13.05	10.37	13.15	10.45
$\mathbf{V o c}_{\text {oc }}$ - Open Circuit Voltage	v	42.96	40.85	43.10	41.00	43.25	41.14	43.40	41.28	43.55	41.42	43.70	41.57	43.85	41.71	43.99	41.85	44.14	41.99
I_{sc} - Short Circuit Current	A	13.17	10.63	13.27	10.71	13.37	10.79	13.47	10.87	13.57	10.95	13.67	11.03	13.77	11.11	13.87	11.19	13.97	11.27
Module efficiency	\%	22.9		23.2		23.4		23.7		23.9		24.2		24.5		24.7		25.0	

Electrical Characteristics measured under:
Measurement Tolerance $\pm 5 \%$
Power tolerance Pmax: -0+5 W
STC = AM 1.5, $1000 \mathrm{~W} / \mathrm{m}^{2}$, Cells Temperature $25^{\circ} \mathrm{C}$

IEC 61215-1:2021; IEC 61215-2:2021; IEC 61730-2:2023; UL 61730:2017 PENDING

